
Аксіоми стереометрії
I. Яка б не була пряма, існують точки, що належать цій прямій, і точки, що не належать їй.
Через будь-які дві точки можна провести пряму, й тільки одну.
II. Із трьох точок на прямій одна й тільки одна лежить між двома іншими.
III. Кожний відрізок має певну довжину, більшу від нуля. Довжина відрізка дорівнює сумі довжин частин, на які він розбивається будь-якою його точкою.
IV. Пряма, що належить площині, розбиває цю площину на дві півплощини.
V. Кожний кут має певну градусну міру, більшу від нуля. Розгорнутий кут дорівнює . Градусна міра кута дорівнює сумі градусних мір кутів, на які він розбивається будь-яким променем, що проходить між його сторонами.
VI. На будь-якій півпрямій від її початкової точки можна відкласти відрізок даної довжини, й тільки один.
VII. Від півпрямої на площині, що містить її, можна відкласти в задану півплощину кут із даною градусною мірою, меншою за , і тільки один.
VIII. Який би не був трикутник, існує трикутник, що дорівнює йому, у даній площині в заданому розміщені відносно даної півпрямої у цій площині.
IX. На площині через дану точку, що не лежить на даній прямій, можна провести не більш як одну пряму, паралельну даній.
До цих аксіом додаються три аксіоми групи С.
. Яка б не була площина, існують точки, що належать цій площині, і точки, які не належать їй.
. Якщо дві різні площини мають спільну точку, то вони перетинаються по прямій, що проходить через цю точку.
. Якщо дві різні прямі мають спільну точку, то через них можна провести площину, й до того ж тільки одну.
Теорема 1. Через пряму і точку, яка не лежить на ній, можна провести площину, й до того ж тільки одну.